Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448036

RESUMO

Autoinflammation is a sterile inflammatory process resulting from increased neutrophil infiltration and overexpression of IL-1 cytokines. The factors that trigger these events are, however, poorly understood. By investigating pustular forms of psoriasis, we show that human neutrophils constitutively express IL-26 and abundantly release it from granular stores upon activation. In pustular psoriasis, neutrophil-derived IL-26 drives the pathogenic autoinflammation process by inducing the expression of IL-1 cytokines and chemokines that further recruit neutrophils. This occurs via activation of IL-26R in keratinocytes and via the formation of complexes between IL-26 and microbiota DNA, which trigger TLR9 activation of neutrophils. Thus our findings identify neutrophils as an important source of IL-26 and point to IL-26 as the key link between neutrophils and a self-sustaining autoinflammation loop in pustular psoriasis.


Assuntos
Neutrófilos , Psoríase , Humanos , Interleucinas , Citocinas , Interleucina-1
2.
Nat Commun ; 14(1): 3878, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391412

RESUMO

Interleukin (IL)-26 is a TH17 cytokine with known antimicrobial and pro-inflammatory functions. However, the precise role of IL-26 in the context of pathogenic TH17 responses is unknown. Here we identify a population of blood TH17 intermediates that produce high levels of IL-26 and differentiate into IL-17A-producing TH17 cells upon TGF-ß1 exposure. By combining single cell RNA sequencing, TCR sequencing and spatial transcriptomics we show that this process occurs in psoriatic skin. In fact, IL-26+ TH17 intermediates infiltrating psoriatic skin induce TGF-ß1 expression in basal keratinocytes and thereby promote their own differentiation into IL-17A-producing cells. Thus, our study identifies IL-26-producing cells as an early differentiation stage of TH17 cells that infiltrates psoriatic skin and controls its own maturation into IL17A-producing TH17 cells, via epithelial crosstalk involving paracrine production of TGF-ß1.


Assuntos
Psoríase , Fator de Crescimento Transformador beta1 , Humanos , Interleucina-17/genética , Diferenciação Celular , Pele
3.
Nat Immunol ; 21(9): 1034-1045, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661363

RESUMO

Skin wounds heal by coordinated induction of inflammation and tissue repair, but the initiating events are poorly defined. Here we uncover a fundamental role of commensal skin microbiota in this process and show that it is mediated by the recruitment and the activation of type I interferon (IFN)-producing plasmacytoid DC (pDC). Commensal bacteria colonizing skin wounds trigger activation of neutrophils to express the chemokine CXCL10, which recruits pDC and acts as an antimicrobial protein to kill exposed microbiota, leading to the formation of CXCL10-bacterial DNA complexes. These complexes and not complexes with host-derived DNA activate pDC to produce type I IFNs, which accelerate wound closure by triggering skin inflammation and early T cell-independent wound repair responses, mediated by macrophages and fibroblasts that produce major growth factors required for healing. These findings identify a key function of commensal microbiota in driving a central innate wound healing response of the skin.


Assuntos
Células Dendríticas/imunologia , Fibroblastos/imunologia , Macrófagos/imunologia , Microbiota/imunologia , Neutrófilos/imunologia , Pele/imunologia , Animais , Células Cultivadas , Quimiocina CXCL10/metabolismo , Humanos , Imunidade Inata , Inflamação , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/patologia , Simbiose , Cicatrização
4.
Front Immunol ; 9: 2805, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564233

RESUMO

Type 1 conventional DCs (cDC1) excel in the cross-priming of CD8+ T cells, which is crucial for orchestrating efficient immune responses against viruses or tumors. However, our understanding of their physiological functions and molecular regulation has been limited by the lack of proper mutant mouse models allowing their conditional genetic targeting. Because the Xcr1 and A530099j19rik (Karma/Gpr141b) genes belong to the core transcriptomic fingerprint of mouse cDC1, we used them to engineer two novel Cre-driver lines, the Xcr1Cre and KarmaCre mice, by knocking in an IRES-Cre expression cassette into their 3'-UTR. We used genetic tracing to characterize the specificity and efficiency of these new models in several lymphoid and non-lymphoid tissues, and compared them to the Clec9aCre mouse model, which targets the immediate precursors of cDCs. Amongst the three Cre-driver mouse models examined, the Xcr1Cre model was the most efficient and specific for the fate mapping of all cDC1, regardless of the tissues examined. The KarmaCre model was rather specific for cDC1 when compared with the Clec9aCre mouse, but less efficient than the Xcr1Cre model. Unexpectedly, the Xcr1Cre model targeted a small fraction of CD4+ T cells, and the KarmaCre model a significant proportion of mast cells in the skin. Importantly, the targeting specificity of these two mouse models was not changed upon inflammation. A high frequency of germline recombination was observed solely in the Xcr1Cre mouse model when both the Cre and the floxed alleles were brought by the same gamete irrespective of its gender. Xcr1, Karma, and Clec9a being differentially expressed within the cDC1 population, the three CRE-driver lines examined showed distinct recombination patterns in cDC1 phenotypic subsets. This advances our understanding of cDC1 subset heterogeneity and the differentiation trajectory of these cells. Therefore, to the best of our knowledge, upon informed use, the Xcr1Cre and KarmaCre mouse models represent the best tools currently reported to specifically and faithfully target cDC1 in vivo, both at steady state and upon inflammation. Future use of these mutant mouse models will undoubtedly boost our understanding of the biology of cDC1.


Assuntos
Apresentação Cruzada/genética , Células Dendríticas/fisiologia , Receptores de Quimiocinas/genética , Regiões 3' não Traduzidas/genética , Animais , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Diferenciação Celular/genética , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Pele/fisiopatologia
5.
EMBO J ; 37(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30131424

RESUMO

Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.


Assuntos
Células Dendríticas/imunologia , Infecções por Herpesviridae/imunologia , Interferon Tipo I/imunologia , Muromegalovirus/imunologia , Transdução de Sinais/imunologia , Complexo 3 de Proteínas Adaptadoras/genética , Complexo 3 de Proteínas Adaptadoras/imunologia , Animais , Células Dendríticas/patologia , Endossomos/genética , Endossomos/imunologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/genética , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia
6.
Immunity ; 45(2): 305-18, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533013

RESUMO

Dendritic cells (DCs) are instrumental in the initiation of T cell responses, but how thymic and peripheral tolerogenic DCs differ globally from Toll-like receptor (TLR)-induced immunogenic DCs remains unclear. Here, we show that thymic XCR1(+) DCs undergo a high rate of maturation, accompanied by profound gene-expression changes that are essential for central tolerance and also happen in germ-free mice. Those changes largely overlap those occurring during tolerogenic and, more unexpectedly, TLR-induced maturation of peripheral XCR1(+) DCs, arguing against the commonly held view that tolerogenic DCs undergo incomplete maturation. Interferon-stimulated gene (ISG) expression was among the few discriminators of immunogenic and tolerogenic XCR1(+) DCs. Tolerogenic XCR1(+) thymic DCs were, however, unique in expressing ISGs known to restrain virus replication. Therefore, a broad functional convergence characterizes tolerogenic and immunogenic XCR1(+) DC maturation in the thymus and periphery, maximizing antigen presentation and signal delivery to developing and to conventional and regulatory mature T cells.


Assuntos
Tolerância Central , Células Dendríticas/imunologia , Tolerância Periférica , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Diferenciação Celular , Células Cultivadas , Fatores Reguladores de Interferon/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Quimiocinas/metabolismo , Receptores Toll-Like/imunologia , Transcriptoma , Replicação Viral
7.
J Exp Med ; 211(6): 1185-96, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24821910

RESUMO

Atopic dermatitis (AD) is a chronic allergic dermatosis characterized by epidermal thickening and dermal inflammatory infiltrates with a dominant Th2 profile during the acute phase, whereas a Th1 profile is characteristic of the chronic stage. Among chemokines and chemokine receptors associated with inflammation, increased levels of CX3CL1 (fractalkine) and its unique receptor, CX3CR1, have been observed in human AD. We have thus investigated their role and mechanism of action in experimental models of AD and psoriasis. AD pathology and immune responses, but not psoriasis, were profoundly decreased in CX3CR1-deficient mice and upon blocking CX3CL1-CX3CR1 interactions in wild-type mice. CX3CR1 deficiency affected neither antigen presentation nor T cell proliferation in vivo upon skin sensitization, but CX3CR1 expression by both Th2 and Th1 cells was required to induce AD. Surprisingly, unlike in allergic asthma, where CX3CL1 and CX3CR1 regulate the pathology by controlling effector CD4(+) T cell survival within inflamed tissues, adoptive transfer experiments established CX3CR1 as a key regulator of CD4(+) T cell retention in inflamed skin, indicating a new function for this chemokine receptor. Therefore, although CX3CR1 and CX3CL1 act through distinct mechanisms in different pathologies, our results further indicate their interest as promising therapeutic targets in allergic diseases.


Assuntos
Quimiocina CX3CL1/imunologia , Dermatite Atópica/imunologia , Receptores de Quimiocinas/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Receptor 1 de Quimiocina CX3C , Proliferação de Células , Células Cultivadas , Quimiocina CX3CL1/antagonistas & inibidores , Quimiocina CX3CL1/genética , Dermatite Atópica/genética , Citometria de Fluxo , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Receptores de Quimiocinas/genética , Pele/metabolismo , Pele/patologia , Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...